General and Inorganic Chemistry

Synthesis of dialkoxy- and alkoxy-amino-disubstituted derivatives of $B_{12}H_{12}^{2-}$

B. Brellochsa and A. Semioshkinb*

^aInstitute of Inorganic Chemistry of Munich University, 1 Meiserstrasse, 80333 Munich, Germany* ^bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax: +7 (095) 135 5085

Dichloromethoxymethane reacts with the sodium salt of closo-dodecahydrododecaborate Na₂B₁₂H₁₂ to give disubstituted cluster, which readily decomposes when treated with various reagents. This cluster reacts with water, forming the previously described 1,7-B₁₂H₁₀(OH)₂²⁻, reaction with alcohols results in a novel 1,7-dialkoxy derivative, whereas interaction with morpholine in acetone solution affords the novel anion, 1-O-I-Pri-7-O(CH₂CH₂)N-B₁₂H₁₀²⁻. All of these derivatives were isolated as cesium salts and characterized by one- and twodimensional NMR techniques.

Key words: closo-dodecahydrododecaborate, dichloromethoxymethane, 1,7-dialkoxy derivatives, 1-isopropoxy-7-morpholino-closo-decahydrododecaborate, NMR-spectra.

The sodium salt of $B_{12}H_{12}^{2-}$ can be easily acylated with aliphatic and aromatic acyl chlorides in acetone, and the mono-hydroxy substituted cluster is always formed as a by-product. 1,2

$$B_{12}H_{12}^{2-} + RCOCI \frac{1.(Me_2)CO}{2.H_2O} B_{12}H_{11}COR^{2-} + B_{12}H_{11}OH^{2-}$$

Since dichloromethoxymethane is a stronger electrophilic agent than acyl chlorides,³ it was interesting to investigate its behavior toward the $B_{12}H_{12}^{2-}$ dianion.

We found that dichloromethoxymethane reacts with the sodium salt of closo-dodecahydrododecaborate in

the two main signals were at 55.4 and 162.4. Compound A is not stable and readily decomposes when treated with various reagents (water, alcohols,

acetone to give the unstable product A of unknown

equivalents (with respect to Na₂B₁₂H₁₂) of sodium chloride. The same feature was observed in the reaction of $Na_2B_{12}H_{12}$ with acyl chlorides, however in that case the

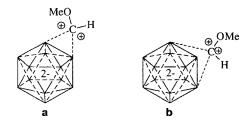
formation of only one equivalent of NaCl was observed.^{1,2} In the ¹¹B NMR spectrum of A there were

was observed at 1.7. In the ¹H NMR spectrum of A the

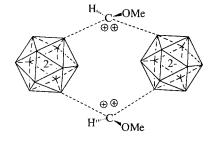
signals at 8.08 and 3.61 were shifted downfield (about

0.5 ppm) compared to Cl₂CHOMe. In the ¹³C NMR

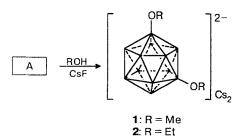
The reaction is accompanied by the formation of two

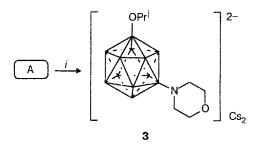

⁵ signals with the intensity ratio 2:2:4:2:2. This pattern is typical of a disubstituted cluster with two equivalent substituents. The signal of the substituted boron atoms

^{*} Institut für Anorganische Chemie der Universität Munchen, Meiserstr. 1, 80333-München, Deutschland.


amines). It reacts with water to form the previously described⁴ 1,7- $B_{12}H_{10}(OH)_2^{2-}$ anion. In the ¹³C NMR spectrum of the hydrolysate there was a signal at 49.2 ppm, which is typical of dimethyl ether.⁵

We have already proved, that in acylation of $B_{12}H_{12}^{2-}$ acylium cations are formed.² For similar reasons we suggest that in the reaction with Cl_2CHOMe a dication is also formed. This dication reacts then with a cluster resulting in A:

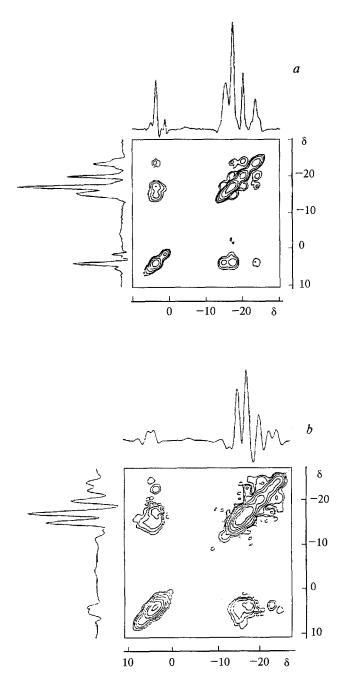

There are two ways in which the dication formed can coordinate with one molecule of cluster (a and b). However path a is not possible because in this case after hydrolysis of such an intermediate, the 1,2- and not the 1,7-dihydroxy isomer would be formed. Path b is not likely due to steric reasons.


Thus the most probable structure of **A** seems to be the one in which two molecules of the cluster coordinate with two dications:

Compound A reacts with alcohols leading to the novel $1.7-B_{12}H_{10}(OR)_2^{2-}$ disubstituted systems 1, 2:

Treatment of an acetone solution of A with morpholine results in the formation of 1-isopropoxy-2-morpholino-closo-decahydrododecaborate 3, which is the first disubstituted B_{12} -cluster containing a B-N bond.

i. 1. morpholine/acetone; 2. CsF/MeOH.


In this case not only does nucleophilic attack by morpholine take place, but also the addition of B—H protons to the CO bond of acetone.

The products 1-3 were isolated as cesium salts and characterized by ¹H, ¹¹B, and ¹³C NMR spectra.

The ${}^{11}B$ NMR spectra of the 1,7-dialkoxy derivatives 1, 2 1,7- $B_{12}H_{10}(OR)_2{}^{2-}$ are typical of B_{12} -clusters with two identical substituents. There are 5 signals with the intensity ratio 2:2:4:2:2. The signals of the B atoms in the substituted positions at δ 3.5 (dimethoxy) and 3.9 (diethoxy) are shifted downfield compared to $1.7-B_{12}H_{10}(OH)_2{}^{2-}$ (2.2 ppm for $[1.7-B_{12}H_{10}(OH)_2][NBu_4]_2$ in $CD_3OD)$. The chemical shift of the B atom in the substituted position of the corresponding cesium salt in D_2O is the same (2.2 ppm).

The meta (1,7)-substitution of clusters 1, 2 was confirmed by ¹¹B-¹¹B-COSY spectra (Fig. 1, a). In the COSY spectrum of the dimethoxy derivative 1 the signal of the B atom in the substituted position has three crosspeaks: two signals (relative intensity 2) at -15.6and -23.8 ppm and one signal (relative intensity 4) at -17.5 ppm. If 1 were an ortho(1,2)-isomer, the signal of the B atom in substituted position would have only two crosspeaks. The signal at -15.6 ppm (relative intensity 2) has two crosspeaks: one to the substituted position (B(1,7)) and one to the signal with relative intensity 4 (B(4,6,8,11)). Therefore, this signal can result only from B(2,3). The signal at -20.4 ppm has no crosspeaks to the substituted position and results from B(9,10). Finally, the signal at -23.9 ppm belongs to B(5,12). For the diethoxy derivative 2 the signals were assigned in a similar manner (Table 1).

In the ¹¹B NMR spectra of the morpholino-isopropoxy derivative 3 (1-OPrⁱ-7-O(CH₂CH₂)₂N-B₁₂H₁₀²⁻) there are 7 signals with an intensity ratio 1:1:2:4:2:1:1. Two signals with relative intensity 1 belong to the substituted B atoms at 4.3 and 3.1 ppm. We deliberately assigned the signal at 4.3 ppm to B—OPrⁱ because the O-substituted atom should be shifted more downfield than the N-substituted B-atom.

Fig. 1. 11 B $-^{11}$ B $-^{COSY}$ spectra (δ, ppm, in D₂O) of **1**(a), **3**(b).

The signal of the O-substituted B atom (B(1)) in ${}^{11}B-{}^{11}B-COSY$ -spectrum (Fig.1, b) of 3 has three crosspeaks and no crosspeaks to the N substituted B atom, as expected for the 1,7-isomer. The N-substituted atom (B(7)) also has three crosspeaks with unsubstituted B atoms.

Atom B(1) has a crosspeak to the signal with relative intensity 1 (-24.8 ppm), therefore the latter can be assigned to B(5). Accordingly, the signal at -23.0 ppm with relative intensity 1 belongs to B(12). Both signals of the substituted boron atoms have no crosspeaks to the

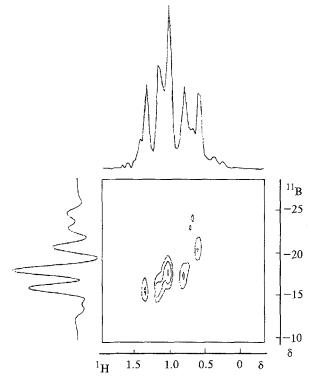


Fig. 2. ${}^{1}H-{}^{11}B-2D$ NMR spectra (ppm, in D₂O) of 3.

Table 1. The ^{11}B NMR spectra parameters (ppm, in D_2O) of 1,7- $B_{12}H_{11}(OR)_2$ (1, 2)

Com-	R	Boron atoms in positions					
pound		1, 7	2, 3	4, 6, 8, 11	9, 10	5, 12	
1	Me	3.5	-15.6	-17.5	-20.4	-23.9	
2	Et	3.9	-14.9	-17.2	-20.0	-23.6	

Table 2. The ¹H NMR of the B—H protons of 1—3 (ppm)

Com- pound	H-atoms in positions					
	2, 3	4, 6, 8 ,11	9, 10	5 и 12		
1	1.37	1.06	0.67	0.67		
2	1.41	1.09	0.69	0.69		
3	1.42	1.11	0.70	0.88		

signal at -20.8 ppm. The latter can be assigned to B(9,10) atoms. The signal at -16.1 ppm has no crosspeaks to the unsubstituted B-atoms with relative intensity 1, *i.e* it should belong to the B(2,3) atoms. Consequently, the signal at -18.0 ppm results from B(6,8,10,11).

In the ${}^{1}H$ NMR spectrum of 1,7-B₁₂H₁₁(OMe)₂²⁻ (1) there was only a singlet at 3.21 ppm. In the ${}^{13}C$ NMR spectrum the methyl groups were represented by a resonance at 53.2 ppm.

In the ¹H NMR spectrum of the diethoxy derivative 2 there was a triplet at 0.98 ppm and a quartet at

3.50 ppm with a ratio of 3:2. In the ¹³C NMR spectrum the signals were also typical for the OEt group (18.4 and 59.0 ppm).

The ¹H NMR spectrum of 3 showed a doublet at 0.98 ppm, a heptet at 3.45 ppm (O—Prⁱ group), and two triplets at 2.87 and 3.63 ppm (morpholino group). In the ¹³C NMR spectrum there were signals at 25.24, 72.48 ppm (O—Prⁱ) and 48.51, 67.08 (morpholine).

The signals of the protons of the B—H groups were detected by recording ${}^{1}H$ —{ ${}^{11}B$ }-decoupled NMR spectra and suppressing the signals of all other protons. The signals were assigned (Table 2) using ${}^{1}H$ — ${}^{11}B$ -two-dimensional spectra (Fig. 2).

Experimental

Materials and equipment. Materials were reagent grade and were used as received from standard commercial vendors (Bayer AG, Aldrich). Acetone was distilled from P_2O_5 immediately prior to use. The 1H , ^{11}B and ^{13}C NMR spectra were recorded at 200.13, 64.21 and 50.32 MHz, respectively, on a Bruker ACP-200 spectrometer. Chemical shifts are given in the δ scale relative to internal standards (TMS, DMSO-d₆, $BF_3 \cdot Et_2O$).

Reactions of Na₂B₁₂H₁₂ with Cl₂CHOMe. Cl₂CHOMe (0.5 ml, 5.6 mmol) was added to a solution of 0.95 g (5 mmol) of Na₂[B₁₂H₁₂] in 25 ml of dry acetone and the mixture was stirred for 12—14 h. The precipitate (NaCl, 0.55 g, 9.4 mmol) was filtered off. A large excess (approximately 3 mL) of a reagent (MeOH, EtOH, morpholine) was added to the filtrate. After stirring for about 0.5 h, relatively pure products 1—3 were precipitated by the addition of 1.52 g (10 mmol) of CsF dissolved in 40 ml of MeOH. The precipitate obtained was filtered off, washed with 2x10 mL of MeOH, and air-dried.

Dicesium-1,7-dimethoxy-closo-decahydrododecaborate (1). Yield 1.34 g of 1 (2.8 mmol, 57%), m.p. > 360°C. Found (%): C, 4.68; H, 3.38. $C_2H_{16}B_{12}Cs_2O_2$. Calculated (%): C, 5.14; H, 3,45. ¹¹B NMR (D₂O, δ, ppm): 3.6 (s, 2 B, B(1,7)); -15.6 (d, 2 B, B(2,3), J_{B-H} = not resolved); -17.5 (d, 4 B, B(4,6,8,11), J_{B-H} = 28.1 Hz); -20.4 (d, 2 B, B(9,10), J_{B-H} = not resolved); -23.9 (d, 2 B, B(5,12); J_{B-H} = 127.6). ¹H NMR (D₂O, δ, ppm): 3.2 (s, 6 H, O-CH₃); B-H: 1.37 (s, 2 H, H(2,3)); 1.06 (s, 4 H,

H(4,6,8,11); 0.67 (s, 4 H, H(9,10 and 5,12)). ¹³C NMR (D₂O/DMSO-d₆, 10:1, δ , ppm): 52.13 (O--CH₃)

Dicesium-1,7-diethoxy-closo-decahydrododecaborate (2). Yield 1.64 g of **2** (3.215 mmol, 64.3 %), m.p. > 360°C. Found (%): C, 9.29: H, 4.09. $C_4H_{20}B_{12}Cs_2O_2$. Calculated (%): C, 9.71; H, 4.07. ^{11}B NMR (D_2O , δ, ppm): 3.9 (s, 2 B, B(1,7)); -15.6 (d, 2 B, B(2,3), $J_{B-H} = 128.2$ Hz); -17.4 (d, 4 B, B (4,6,8,11); $J_{B-H} = 140.1$ Hz); -20.3 (d, 2 B, B(7-9,10); $J_{B-H} =$ not resolved), -23.6 (d, 2 B, B(5,12), $J_{B-H} = 128.5$ Hz). ^{1}H NMR (D_2O , δ, ppm): 3.5 (q, 4 H, O-CH₂(-)); 1.0 (t, 6 H, CH₃); B-H: 1.58 (s, 2 H, H(2,3)); 1.03 (s, 4 H, H(4,6,8,11)); 0.70 (s, 4 H, H(39, 10 and 5, 12)). ^{13}C NMR ($D_2O/DMSO-d_6$, δ, ppm): 62.01 (O-CH₂); 18.4 (--CH₃).

Dicesium-1-isopropoxy-7-morpholino-closo-decahydrododecacaborate (3). Yield 2.21 g of 3 (4.1 mmol, 82%), m.p. >350°C. $C_7H_{25}B_{12}Cs_2NO_2$. Found (%): C, 15.02; H, 4.61; N, 6.24. Calculated (%): C, 15.26: H, 4.57; N, 2.54. IB NMR (D₂O, δ, ppm): 4.3 (s, 1 B, B(1)); 3.14 (d, 1B, B(7)); -16.1 (d, 2 B, B(2,3)); -18.0 (d, 2B, B (4, 6, 8, 11)); -20.8 (d, 2 B, B(9, 10)); -23.0 (d, 1 B, B (12)); -24.9 (s, 1 B, B(5); J_{B-H} = not resolved). IH NMR (D₂O, δ, ppm): 3.56 (t, 4 H, O-CH₂); 3.49 (m, 1 H, O-CH); 2.87 (t, 4 H, N-CH₂); 0.93 (d, 6 H, CH₃); B-H: 1.42 (s, 2 H, H(2,3)); 1.11 (s, 4 H, H(4,6,8,11)); 0.88 (s, 2 H, H(5, 12)); 0.70 (s, 2 H, H(9, 10)). I³C NMR (D₂O/DMSO-d₆, 10:1, δ, ppm): 72.45 (CH); 67.09 (O-CH₂); 45.51 (N-CH₂); 25.24 (CH₃).

Acknowledgements. Many thanks to Prof. H. Noeth (University of Munich) for making his laboratory available for this work.

References

- B. Brellochs and A. Semioshkin, J. Chem. Soc. Dalton. Trans., 1995, in press.
- A. Semioshkin, Ph. D. Thesis (Chem), München, BRD, 1994, 51p.
- 3. J. March, Advanced Organic Chemistry, 3rd edition, John Wiley & Sons, New York, 1985.
- B. Brellochs and A. Semioshkin J. Chem. Soc. Dalton. Trans., 1995, in press
- H. O. Kalinowski, S. Berger, and S. Brown, ¹³C NMR-Spectroscopy., Georg Thieme Verlag, Stuttgart — New York, 1984, 288.

Received September 28, 1994.